A nuclear casein kinase 2 activity is involved in early events of transcriptional activation induced by salicylic acid in tobacco.
نویسندگان
چکیده
Salicylic acid (SA) activates immediate early transcription of genes controlled by a family of DNA promoter elements named as-1-like elements. These elements are functional in the promoter of glutathione S-transferase genes. We have previously shown that SA increases the binding of tobacco (Nicotiana tabacum cv Xanthi nc) nuclear factors to the as-1 sequence in a process mediated by protein phosphorylation. In this study we give evidence for the participation of a nuclear protein kinase CK2 (casein kinase 2) in the pathway activated by SA in tobacco. The first line of evidence comes from the evaluation of the CK2 activity in nuclear extracts prepared from tobacco plants treated with SA or water as a control. Results from these experiments indicate that SA increases the nuclear CK2 activity. The second line of evidence derives from the evaluation of the in vivo effect of 5,6-dichloro-1-(beta-D-ribofuranosyl) benzimidazole (DRB), a cell-permeable CK2 inhibitor, on the responsiveness of the as-1 sequence to SA. Results from these experiments indicate that DRB impairs the activating effect of SA on the transcription of both, the GUS reporter gene controlled by a tetramer of the as-1 element, and the endogenous gnt35 gene encoding a glutathione S-transferase, in transgenic tobacco plants. DRB also impaired the increasing effect of SA on the binding of nuclear factors to the as-1 element. Furthermore, transcription of the as-1/GUS reporter gene activated by the synthetic auxin 2,4-dichlorophenoxyacetic acid and by methyl jasmonate was also inhibited by DRB. To our knowledge, this is the first report in which activation of a CK2 enzyme by a plant hormone is reported.
منابع مشابه
Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells.
In tobacco cells, osmotic stress induced the rapid activation of two protein kinases that phosphorylate myelin basic protein. Immunological studies demonstrated that the 48-kD kinase is the salicylic acid-induced protein kinase (SIPK), a member of the mitogen-activated protein kinase family. SIPK was activated 5 to 10 min after the cells were exposed to osmotic stresses, and its activity persis...
متن کاملTranscriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.
Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملInvolvement of protein kinases and calcium in the NO-signalling cascade for defence-gene induction in ozonated tobacco plants.
This study analyses the signalling pathways triggered by nitric oxide (NO) in response to ozone (O(3)) fumigation of tobacco plants, with particular attention to protein kinase cascades and free cytosolic Ca(2+) in defence-gene activation. NO was visualized with the NO probe DAF-FM. Using a pharmacological approach, the effects of different inhibitors on the expression profiles of NO-dependent ...
متن کاملSalicylic acid glucoside acts as a slow inducer of oxidative burst in tobacco suspension culture.
Salicylic acid beta-glucoside (SAG) is a storage form of a defense signal against pathogens, releasing free salicylic acid (SA), to meet the requirements in plants. Since excess SA induces locally restricted cell death following oxidative burst and Ca2+ influx in plants, the effects of SAG on cell viability, Ca2+ influx, and generation of superoxide (O2*-) were examined in suspension-cultured t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 125 1 شماره
صفحات -
تاریخ انتشار 2001